sp(16), type \(C^{1}_8\)
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.

Page generated by the calculator project.
g: C^{1}_8. There are 185 table entries (= 183 larger than the Cartan subalgebra + the Cartan subalgebra + the full subalgebra).
Type k_{ss}: C^{1}_8
(Full subalgebra)
Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_7+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_6+B^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_6+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_5+C^{1}_3

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_5+B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_5+3A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2C^{1}_4

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+C^{1}_3+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+2B^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+B^{1}_2+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+4A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2C^{1}_3+B^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2C^{1}_3+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+2B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+B^{1}_2+3A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+5A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 4B^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 3B^{1}_2+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2B^{1}_2+4A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: B^{1}_2+6A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 8A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_7

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_7

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_6+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_6+A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_6+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_5+B^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_5+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_5+A^{2}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_5+B^{1}_2

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_5+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_5+2A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_4+C^{1}_3

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_4+B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_4+3A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+A^{2}_3

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+C^{1}_3

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_4+A^{2}_2+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+B^{1}_2+A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_4+A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+3A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_3+C^{1}_3+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_3+2B^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_3+B^{1}_2+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_3+4A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2C^{1}_3+A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2C^{1}_3+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_3+A^{2}_2+B^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+A^{2}_2+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+2B^{1}_2

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_3+B^{1}_2+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+B^{1}_2+2A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_3+A^{2}_1+3A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+4A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_2+2B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_2+B^{1}_2+3A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_2+5A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 3B^{1}_2+A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 3B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: 2B^{1}_2+A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2B^{1}_2+3A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: B^{1}_2+A^{2}_1+4A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: B^{1}_2+5A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_1+6A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 7A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_6

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_6

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_5+A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_5+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_5+A^{2}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_5+A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_4+A^{2}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_4+B^{1}_2

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_4+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_4+2A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_4+A^{2}_2

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_4+B^{1}_2

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_4+2A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_4+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_4+2A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 2A^{2}_3

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_3+C^{1}_3

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_3+A^{2}_2+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_3+B^{1}_2+A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_3+B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_3+A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_3+3A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: 2C^{1}_3

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_3+A^{2}_2+A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+A^{2}_2+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_3+B^{1}_2+A^{2}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_3+B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_3+2A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: C^{1}_3+A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_3+3A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 2A^{2}_2+B^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2A^{2}_2+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_2+2B^{1}_2

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_2+B^{1}_2+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_2+B^{1}_2+2A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_2+A^{2}_1+3A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_2+4A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: 3B^{1}_2

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 2B^{1}_2+2A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2B^{1}_2+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: 2B^{1}_2+2A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: B^{1}_2+2A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: B^{1}_2+A^{2}_1+3A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: B^{1}_2+4A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 2A^{2}_1+4A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_1+5A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: 6A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_5

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_5

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: A^{2}_4+A^{2}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_4+A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_4+A^{2}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_4+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: A^{2}_3+A^{2}_2

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_3+B^{1}_2

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_3+2A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_3+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_3+2A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_3+A^{2}_2

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_3+B^{1}_2

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: C^{1}_3+2A^{2}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: C^{1}_3+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: C^{1}_3+2A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: 2A^{2}_2+A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2A^{2}_2+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_2+B^{1}_2+A^{2}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_2+B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_2+2A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{2}_2+A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_2+3A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 2B^{1}_2+A^{2}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 2B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: B^{1}_2+3A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: B^{1}_2+2A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: B^{1}_2+A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: B^{1}_2+3A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: 3A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 2A^{2}_1+3A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_1+4A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 5A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: A^{2}_4

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: C^{1}_4

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: A^{2}_3+A^{2}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_3+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: C^{1}_3+A^{2}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: C^{1}_3+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: 2A^{2}_2

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_2+B^{1}_2

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: A^{2}_2+2A^{2}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{2}_2+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_2+2A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: 2B^{1}_2

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: B^{1}_2+2A^{2}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: B^{1}_2+A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: B^{1}_2+2A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: 4A^{2}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: 3A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: 2A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: A^{2}_1+3A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: 4A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: A^{2}_3

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: C^{1}_3

Type C(k_{ss})_{ss}: C^{1}_5
Type k_{ss}: A^{2}_2+A^{2}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: A^{2}_2+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: B^{1}_2+A^{2}_1

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: B^{1}_2+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_5
Type k_{ss}: 3A^{2}_1

Type C(k_{ss})_{ss}: B^{1}_2
Type k_{ss}: 2A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_3
Type k_{ss}: A^{2}_1+2A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: 3A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_5
Type k_{ss}: A^{2}_2

Type C(k_{ss})_{ss}: C^{1}_5
Type k_{ss}: B^{1}_2

Type C(k_{ss})_{ss}: C^{1}_6
Type k_{ss}: 2A^{2}_1

Type C(k_{ss})_{ss}: C^{1}_4
Type k_{ss}: A^{2}_1+A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_5
Type k_{ss}: 2A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_6
Type k_{ss}: A^{2}_1

Type C(k_{ss})_{ss}: C^{1}_6
Type k_{ss}: A^{1}_1

Type C(k_{ss})_{ss}: C^{1}_7
Type k_{ss}: 0
(Cartan subalgebra)
Type C(k_{ss})_{ss}: C^{1}_8

There are 67 parabolic, 47 pseudo-parabolic but not parabolic and 71 non pseudo-parabolic root subsystems.
The roots needed to generate the root subsystems are listed below.
["parabolic","0", []],
["parabolic","A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1]]],
["parabolic","A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1]]],
["parabolic","A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1]]],
["parabolic","2A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1]]],
["parabolic","B^{1}_2", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0]]],
["parabolic","A^{2}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0]]],
["parabolic","2A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1]]],
["parabolic","3A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 1, 2, 2, 1]]],
["parabolic","B^{1}_2+A^{2}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1]]],
["parabolic","A^{2}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1]]],
["parabolic","A^{2}_2+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1]]],
["parabolic","C^{1}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1]]],
["parabolic","A^{2}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0]]],
["parabolic","3A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["parabolic","4A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","B^{1}_2+2A^{2}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 1, 2, 2, 1]]],
["parabolic","A^{2}_2+A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["parabolic","A^{2}_2+2A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 1, 2, 1]]],
["parabolic","A^{2}_2+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0]]],
["parabolic","2A^{2}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0]]],
["parabolic","C^{1}_3+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1]]],
["parabolic","A^{2}_3+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1]]],
["parabolic","A^{2}_3+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1]]],
["parabolic","C^{1}_4", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1]]],
["parabolic","A^{2}_4", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0]]],
["parabolic","B^{1}_2+3A^{2}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","A^{2}_2+2A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["parabolic","A^{2}_2+B^{1}_2+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 1]]],
["parabolic","2A^{2}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1]]],
["parabolic","2A^{2}_2+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","C^{1}_3+2A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 1, 2, 1]]],
["parabolic","C^{1}_3+A^{2}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0]]],
["parabolic","A^{2}_3+A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["parabolic","A^{2}_3+2A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","A^{2}_3+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0]]],
["parabolic","A^{2}_3+A^{2}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0]]],
["parabolic","C^{1}_4+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1]]],
["parabolic","A^{2}_4+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1]]],
["parabolic","A^{2}_4+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 1]]],
["parabolic","C^{1}_5", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1]]],
["parabolic","A^{2}_5", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0]]],
["parabolic","2A^{2}_2+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["parabolic","C^{1}_3+A^{2}_2+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","A^{2}_3+B^{1}_2+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","A^{2}_3+A^{2}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]],
["parabolic","A^{2}_3+C^{1}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -2, -1]]],
["parabolic","2A^{2}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -1, 0]]],
["parabolic","C^{1}_4+2A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","C^{1}_4+A^{2}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0]]],
["parabolic","A^{2}_4+A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["parabolic","A^{2}_4+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0]]],
["parabolic","A^{2}_4+A^{2}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["parabolic","C^{1}_5+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 1, 2, 1]]],
["parabolic","A^{2}_5+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1]]],
["parabolic","A^{2}_5+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","C^{1}_6", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1]]],
["parabolic","A^{2}_6", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 0, 0]]],
["parabolic","C^{1}_4+A^{2}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -1, 0]]],
["parabolic","A^{2}_4+C^{1}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 0, 0, -1]]],
["parabolic","C^{1}_5+A^{2}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["parabolic","A^{2}_5+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["parabolic","C^{1}_6+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1], [0, 0, 0, 0, 0, 0, 1, 1]]],
["parabolic","A^{2}_6+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]],
["parabolic","C^{1}_7", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -2, -1]]],
["parabolic","A^{2}_7", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -1, 0]]],
["parabolic","C^{1}_8", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 0, 0, -1]]],
["pseudoParabolicNonParabolic","2A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [0, 2, 2, 2, 2, 2, 2, 1]]],
["pseudoParabolicNonParabolic","A^{2}_1+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1]]],
["pseudoParabolicNonParabolic","B^{1}_2+A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1]]],
["pseudoParabolicNonParabolic","2A^{2}_1+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["pseudoParabolicNonParabolic","B^{1}_2+A^{2}_1+A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1]]],
["pseudoParabolicNonParabolic","2B^{1}_2", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0]]],
["pseudoParabolicNonParabolic","A^{2}_2+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_3+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1]]],
["pseudoParabolicNonParabolic","3A^{2}_1+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","B^{1}_2+2A^{2}_1+A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["pseudoParabolicNonParabolic","2B^{1}_2+A^{2}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1]]],
["pseudoParabolicNonParabolic","A^{2}_2+A^{2}_1+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["pseudoParabolicNonParabolic","A^{2}_2+B^{1}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_3+A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_3+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0]]],
["pseudoParabolicNonParabolic","A^{2}_3+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_4+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1]]],
["pseudoParabolicNonParabolic","2B^{1}_2+2A^{2}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 1, 1]]],
["pseudoParabolicNonParabolic","A^{2}_2+B^{1}_2+A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","A^{2}_2+2B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0]]],
["pseudoParabolicNonParabolic","2A^{2}_2+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","C^{1}_3+2A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","C^{1}_3+B^{1}_2+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_3+A^{2}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1]]],
["pseudoParabolicNonParabolic","2C^{1}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1]]],
["pseudoParabolicNonParabolic","A^{2}_3+A^{2}_1+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","A^{2}_3+B^{1}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_4+A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_4+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0]]],
["pseudoParabolicNonParabolic","A^{2}_4+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_5+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["pseudoParabolicNonParabolic","C^{1}_3+A^{2}_2+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["pseudoParabolicNonParabolic","2C^{1}_3+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1], [0, 0, 0, 0, 0, 0, 1, 1]]],
["pseudoParabolicNonParabolic","A^{2}_3+2B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["pseudoParabolicNonParabolic","A^{2}_3+C^{1}_3+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -2, -1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","C^{1}_4+B^{1}_2+A^{2}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1]]],
["pseudoParabolicNonParabolic","C^{1}_4+A^{2}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","C^{1}_4+C^{1}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -2, -1]]],
["pseudoParabolicNonParabolic","A^{2}_4+B^{1}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","C^{1}_5+A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","C^{1}_5+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0]]],
["pseudoParabolicNonParabolic","A^{2}_5+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["pseudoParabolicNonParabolic","C^{1}_6+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["pseudoParabolicNonParabolic","2C^{1}_4", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 0, 0, -1]]],
["pseudoParabolicNonParabolic","C^{1}_5+C^{1}_3", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 0, 0, -1]]],
["pseudoParabolicNonParabolic","C^{1}_6+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["pseudoParabolicNonParabolic","C^{1}_7+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -2, -1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","3A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [0, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1]]],
["nonPseudoParabolic","4A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [0, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1]]],
["nonPseudoParabolic","A^{2}_1+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1]]],
["nonPseudoParabolic","B^{1}_2+2A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1]]],
["nonPseudoParabolic","5A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [0, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1]]],
["nonPseudoParabolic","A^{2}_1+4A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","2A^{2}_1+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","B^{1}_2+3A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1]]],
["nonPseudoParabolic","B^{1}_2+A^{2}_1+2A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","2B^{1}_2+A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1]]],
["nonPseudoParabolic","A^{2}_2+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","C^{1}_3+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1]]],
["nonPseudoParabolic","6A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [0, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","A^{2}_1+5A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","2A^{2}_1+4A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","B^{1}_2+4A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","B^{1}_2+A^{2}_1+3A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","B^{1}_2+2A^{2}_1+2A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","2B^{1}_2+2A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","2B^{1}_2+A^{2}_1+A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","3B^{1}_2", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0]]],
["nonPseudoParabolic","A^{2}_2+4A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","A^{2}_2+A^{2}_1+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","A^{2}_2+B^{1}_2+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","C^{1}_3+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","C^{1}_3+A^{2}_1+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","C^{1}_3+B^{1}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","A^{2}_3+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","C^{1}_4+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1]]],
["nonPseudoParabolic","7A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [0, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","A^{2}_1+6A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","B^{1}_2+5A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","B^{1}_2+A^{2}_1+4A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","2B^{1}_2+3A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","2B^{1}_2+A^{2}_1+2A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","3B^{1}_2+A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","3B^{1}_2+A^{2}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1]]],
["nonPseudoParabolic","A^{2}_2+5A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","A^{2}_2+B^{1}_2+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","A^{2}_2+2B^{1}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_3+4A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","C^{1}_3+A^{2}_1+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_3+B^{1}_2+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","C^{1}_3+B^{1}_2+A^{2}_1+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_3+2B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0]]],
["nonPseudoParabolic","C^{1}_3+A^{2}_2+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","2C^{1}_3+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","A^{2}_3+4A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","A^{2}_3+B^{1}_2+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_4+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","C^{1}_4+A^{2}_1+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_4+B^{1}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","A^{2}_4+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_5+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1]]],
["nonPseudoParabolic","8A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [0, 2, 2, 2, 2, 2, 2, 1], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","B^{1}_2+6A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","2B^{1}_2+4A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","3B^{1}_2+2A^{1}_1", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","4B^{1}_2", [[2, 2, 2, 2, 2, 2, 2, 1], [-1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 2, 2, 2, 2, 1], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["nonPseudoParabolic","C^{1}_3+5A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_3+B^{1}_2+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_3+2B^{1}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 2, 2, 2, 2, 1], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","2C^{1}_3+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","2C^{1}_3+B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -2, -2, -2, -2, -2, -1], [0, 0, 0, 1, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["nonPseudoParabolic","C^{1}_4+4A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_4+B^{1}_2+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_4+2B^{1}_2", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 2, 2, 2, 1], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, -1, 0]]],
["nonPseudoParabolic","C^{1}_4+C^{1}_3+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -2, -2, -2, -2, -1], [0, 0, 0, 0, 1, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, -2, -1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_5+3A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_5+B^{1}_2+A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -2, -2, -2, -1], [0, 0, 0, 0, 0, 2, 2, 1], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]],
["nonPseudoParabolic","C^{1}_6+2A^{1}_1", [[1, 2, 2, 2, 2, 2, 2, 1], [0, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, -2, -2, -1], [0, 0, 0, 0, 0, 0, 2, 1], [0, 0, 0, 0, 0, 0, 0, 1]]]
LaTeX table with root subalgebra details.
\documentclass{article}
\usepackage{longtable, amssymb, lscape}
\begin{document}
Lie algebra type: $C^{1}_8$. There are 185 table entries (= 183 larger than the Cartan subalgebra + the Cartan subalgebra + the full subalgebra).
Let $\mathfrak g$ stand for the type of the regular subalgebra and $C(\mathfrak g)$ for the type of the centralizer. Let $r$ stand for the rank of $\mathfrak g$, let $r_c$ stand for the rank of the semisimple part of the centralizer, let $p$ stand for the number of positive roots of $\mathfrak g$, let $q$ stand for the number of positive roots of the centralizer, and let $m$ stand for the number of $A_1$ components (of all root lengths) of $\mathfrak g$. \begin{longtable}{cccccccc}
$\mathfrak g$ & $C(\mathfrak g)$& $p$ & $q$& $m$& $r$ & $c_r$ \\\endhead
$C^{1}_8$&$0$&$64$&$0$&$0$&$8$&$0$&\\
$C^{1}_7+A^{1}_1$&$0$&$50$&$0$&$1$&$8$&$0$&\\
$C^{1}_6+B^{1}_2$&$0$&$40$&$0$&$0$&$8$&$0$&\\
$C^{1}_6+2A^{1}_1$&$0$&$38$&$0$&$2$&$8$&$0$&\\
$C^{1}_5+C^{1}_3$&$0$&$34$&$0$&$0$&$8$&$0$&\\
$C^{1}_5+B^{1}_2+A^{1}_1$&$0$&$30$&$0$&$1$&$8$&$0$&\\
$C^{1}_5+3A^{1}_1$&$0$&$28$&$0$&$3$&$8$&$0$&\\
$2C^{1}_4$&$0$&$32$&$0$&$0$&$8$&$0$&\\
$C^{1}_4+C^{1}_3+A^{1}_1$&$0$&$26$&$0$&$1$&$8$&$0$&\\
$C^{1}_4+2B^{1}_2$&$0$&$24$&$0$&$0$&$8$&$0$&\\
$C^{1}_4+B^{1}_2+2A^{1}_1$&$0$&$22$&$0$&$2$&$8$&$0$&\\
$C^{1}_4+4A^{1}_1$&$0$&$20$&$0$&$4$&$8$&$0$&\\
$2C^{1}_3+B^{1}_2$&$0$&$22$&$0$&$0$&$8$&$0$&\\
$2C^{1}_3+2A^{1}_1$&$0$&$20$&$0$&$2$&$8$&$0$&\\
$C^{1}_3+2B^{1}_2+A^{1}_1$&$0$&$18$&$0$&$1$&$8$&$0$&\\
$C^{1}_3+B^{1}_2+3A^{1}_1$&$0$&$16$&$0$&$3$&$8$&$0$&\\
$C^{1}_3+5A^{1}_1$&$0$&$14$&$0$&$5$&$8$&$0$&\\
$4B^{1}_2$&$0$&$16$&$0$&$0$&$8$&$0$&\\
$3B^{1}_2+2A^{1}_1$&$0$&$14$&$0$&$2$&$8$&$0$&\\
$2B^{1}_2+4A^{1}_1$&$0$&$12$&$0$&$4$&$8$&$0$&\\
$B^{1}_2+6A^{1}_1$&$0$&$10$&$0$&$6$&$8$&$0$&\\
$8A^{1}_1$&$0$&$8$&$0$&$8$&$8$&$0$&\\
$A^{2}_7$&$0$&$28$&$0$&$0$&$7$&$0$&\\
$C^{1}_7$&$A^{1}_1$&$49$&$1$&$0$&$7$&$1$&\\
$A^{2}_6+A^{1}_1$&$0$&$22$&$0$&$1$&$7$&$0$&\\
$C^{1}_6+A^{2}_1$&$0$&$37$&$0$&$1$&$7$&$0$&\\
$C^{1}_6+A^{1}_1$&$A^{1}_1$&$37$&$1$&$1$&$7$&$1$&\\
$A^{2}_5+B^{1}_2$&$0$&$19$&$0$&$0$&$7$&$0$&\\
$A^{2}_5+2A^{1}_1$&$0$&$17$&$0$&$2$&$7$&$0$&\\
$C^{1}_5+A^{2}_2$&$0$&$28$&$0$&$0$&$7$&$0$&\\
$C^{1}_5+B^{1}_2$&$A^{1}_1$&$29$&$1$&$0$&$7$&$1$&\\
$C^{1}_5+A^{2}_1+A^{1}_1$&$0$&$27$&$0$&$2$&$7$&$0$&\\
$C^{1}_5+2A^{1}_1$&$A^{1}_1$&$27$&$1$&$2$&$7$&$1$&\\
$A^{2}_4+C^{1}_3$&$0$&$19$&$0$&$0$&$7$&$0$&\\
$A^{2}_4+B^{1}_2+A^{1}_1$&$0$&$15$&$0$&$1$&$7$&$0$&\\
$A^{2}_4+3A^{1}_1$&$0$&$13$&$0$&$3$&$7$&$0$&\\
$C^{1}_4+A^{2}_3$&$0$&$22$&$0$&$0$&$7$&$0$&\\
$C^{1}_4+C^{1}_3$&$A^{1}_1$&$25$&$1$&$0$&$7$&$1$&\\
$C^{1}_4+A^{2}_2+A^{1}_1$&$0$&$20$&$0$&$1$&$7$&$0$&\\
$C^{1}_4+B^{1}_2+A^{2}_1$&$0$&$21$&$0$&$1$&$7$&$0$&\\
$C^{1}_4+B^{1}_2+A^{1}_1$&$A^{1}_1$&$21$&$1$&$1$&$7$&$1$&\\
$C^{1}_4+A^{2}_1+2A^{1}_1$&$0$&$19$&$0$&$3$&$7$&$0$&\\
$C^{1}_4+3A^{1}_1$&$A^{1}_1$&$19$&$1$&$3$&$7$&$1$&\\
$A^{2}_3+C^{1}_3+A^{1}_1$&$0$&$16$&$0$&$1$&$7$&$0$&\\
$A^{2}_3+2B^{1}_2$&$0$&$14$&$0$&$0$&$7$&$0$&\\
$A^{2}_3+B^{1}_2+2A^{1}_1$&$0$&$12$&$0$&$2$&$7$&$0$&\\
$A^{2}_3+4A^{1}_1$&$0$&$10$&$0$&$4$&$7$&$0$&\\
$2C^{1}_3+A^{2}_1$&$0$&$19$&$0$&$1$&$7$&$0$&\\
$2C^{1}_3+A^{1}_1$&$A^{1}_1$&$19$&$1$&$1$&$7$&$1$&\\
$C^{1}_3+A^{2}_2+B^{1}_2$&$0$&$16$&$0$&$0$&$7$&$0$&\\
$C^{1}_3+A^{2}_2+2A^{1}_1$&$0$&$14$&$0$&$2$&$7$&$0$&\\
$C^{1}_3+2B^{1}_2$&$A^{1}_1$&$17$&$1$&$0$&$7$&$1$&\\
$C^{1}_3+B^{1}_2+A^{2}_1+A^{1}_1$&$0$&$15$&$0$&$2$&$7$&$0$&\\
$C^{1}_3+B^{1}_2+2A^{1}_1$&$A^{1}_1$&$15$&$1$&$2$&$7$&$1$&\\
$C^{1}_3+A^{2}_1+3A^{1}_1$&$0$&$13$&$0$&$4$&$7$&$0$&\\
$C^{1}_3+4A^{1}_1$&$A^{1}_1$&$13$&$1$&$4$&$7$&$1$&\\
$A^{2}_2+2B^{1}_2+A^{1}_1$&$0$&$12$&$0$&$1$&$7$&$0$&\\
$A^{2}_2+B^{1}_2+3A^{1}_1$&$0$&$10$&$0$&$3$&$7$&$0$&\\
$A^{2}_2+5A^{1}_1$&$0$&$8$&$0$&$5$&$7$&$0$&\\
$3B^{1}_2+A^{2}_1$&$0$&$13$&$0$&$1$&$7$&$0$&\\
$3B^{1}_2+A^{1}_1$&$A^{1}_1$&$13$&$1$&$1$&$7$&$1$&\\
$2B^{1}_2+A^{2}_1+2A^{1}_1$&$0$&$11$&$0$&$3$&$7$&$0$&\\
$2B^{1}_2+3A^{1}_1$&$A^{1}_1$&$11$&$1$&$3$&$7$&$1$&\\
$B^{1}_2+A^{2}_1+4A^{1}_1$&$0$&$9$&$0$&$5$&$7$&$0$&\\
$B^{1}_2+5A^{1}_1$&$A^{1}_1$&$9$&$1$&$5$&$7$&$1$&\\
$A^{2}_1+6A^{1}_1$&$0$&$7$&$0$&$7$&$7$&$0$&\\
$7A^{1}_1$&$A^{1}_1$&$7$&$1$&$7$&$7$&$1$&\\
$A^{2}_6$&$A^{1}_1$&$21$&$1$&$0$&$6$&$1$&\\
$C^{1}_6$&$B^{1}_2$&$36$&$4$&$0$&$6$&$2$&\\
$A^{2}_5+A^{2}_1$&$0$&$16$&$0$&$1$&$6$&$0$&\\
$A^{2}_5+A^{1}_1$&$A^{1}_1$&$16$&$1$&$1$&$6$&$1$&\\
$C^{1}_5+A^{2}_1$&$A^{1}_1$&$26$&$1$&$1$&$6$&$1$&\\
$C^{1}_5+A^{1}_1$&$B^{1}_2$&$26$&$4$&$1$&$6$&$2$&\\
$A^{2}_4+A^{2}_2$&$0$&$13$&$0$&$0$&$6$&$0$&\\
$A^{2}_4+B^{1}_2$&$A^{1}_1$&$14$&$1$&$0$&$6$&$1$&\\
$A^{2}_4+A^{2}_1+A^{1}_1$&$0$&$12$&$0$&$2$&$6$&$0$&\\
$A^{2}_4+2A^{1}_1$&$A^{1}_1$&$12$&$1$&$2$&$6$&$1$&\\
$C^{1}_4+A^{2}_2$&$A^{1}_1$&$19$&$1$&$0$&$6$&$1$&\\
$C^{1}_4+B^{1}_2$&$B^{1}_2$&$20$&$4$&$0$&$6$&$2$&\\
$C^{1}_4+2A^{2}_1$&$0$&$18$&$0$&$2$&$6$&$0$&\\
$C^{1}_4+A^{2}_1+A^{1}_1$&$A^{1}_1$&$18$&$1$&$2$&$6$&$1$&\\
$C^{1}_4+2A^{1}_1$&$B^{1}_2$&$18$&$4$&$2$&$6$&$2$&\\
$2A^{2}_3$&$0$&$12$&$0$&$0$&$6$&$0$&\\
$A^{2}_3+C^{1}_3$&$A^{1}_1$&$15$&$1$&$0$&$6$&$1$&\\
$A^{2}_3+A^{2}_2+A^{1}_1$&$0$&$10$&$0$&$1$&$6$&$0$&\\
$A^{2}_3+B^{1}_2+A^{2}_1$&$0$&$11$&$0$&$1$&$6$&$0$&\\
$A^{2}_3+B^{1}_2+A^{1}_1$&$A^{1}_1$&$11$&$1$&$1$&$6$&$1$&\\
$A^{2}_3+A^{2}_1+2A^{1}_1$&$0$&$9$&$0$&$3$&$6$&$0$&\\
$A^{2}_3+3A^{1}_1$&$A^{1}_1$&$9$&$1$&$3$&$6$&$1$&\\
$2C^{1}_3$&$B^{1}_2$&$18$&$4$&$0$&$6$&$2$&\\
$C^{1}_3+A^{2}_2+A^{2}_1$&$0$&$13$&$0$&$1$&$6$&$0$&\\
$C^{1}_3+A^{2}_2+A^{1}_1$&$A^{1}_1$&$13$&$1$&$1$&$6$&$1$&\\
$C^{1}_3+B^{1}_2+A^{2}_1$&$A^{1}_1$&$14$&$1$&$1$&$6$&$1$&\\
$C^{1}_3+B^{1}_2+A^{1}_1$&$B^{1}_2$&$14$&$4$&$1$&$6$&$2$&\\
$C^{1}_3+2A^{2}_1+A^{1}_1$&$0$&$12$&$0$&$3$&$6$&$0$&\\
$C^{1}_3+A^{2}_1+2A^{1}_1$&$A^{1}_1$&$12$&$1$&$3$&$6$&$1$&\\
$C^{1}_3+3A^{1}_1$&$B^{1}_2$&$12$&$4$&$3$&$6$&$2$&\\
$2A^{2}_2+B^{1}_2$&$0$&$10$&$0$&$0$&$6$&$0$&\\
$2A^{2}_2+2A^{1}_1$&$0$&$8$&$0$&$2$&$6$&$0$&\\
$A^{2}_2+2B^{1}_2$&$A^{1}_1$&$11$&$1$&$0$&$6$&$1$&\\
$A^{2}_2+B^{1}_2+A^{2}_1+A^{1}_1$&$0$&$9$&$0$&$2$&$6$&$0$&\\
$A^{2}_2+B^{1}_2+2A^{1}_1$&$A^{1}_1$&$9$&$1$&$2$&$6$&$1$&\\
$A^{2}_2+A^{2}_1+3A^{1}_1$&$0$&$7$&$0$&$4$&$6$&$0$&\\
$A^{2}_2+4A^{1}_1$&$A^{1}_1$&$7$&$1$&$4$&$6$&$1$&\\
$3B^{1}_2$&$B^{1}_2$&$12$&$4$&$0$&$6$&$2$&\\
$2B^{1}_2+2A^{2}_1$&$0$&$10$&$0$&$2$&$6$&$0$&\\
$2B^{1}_2+A^{2}_1+A^{1}_1$&$A^{1}_1$&$10$&$1$&$2$&$6$&$1$&\\
$2B^{1}_2+2A^{1}_1$&$B^{1}_2$&$10$&$4$&$2$&$6$&$2$&\\
$B^{1}_2+2A^{2}_1+2A^{1}_1$&$0$&$8$&$0$&$4$&$6$&$0$&\\
$B^{1}_2+A^{2}_1+3A^{1}_1$&$A^{1}_1$&$8$&$1$&$4$&$6$&$1$&\\
$B^{1}_2+4A^{1}_1$&$B^{1}_2$&$8$&$4$&$4$&$6$&$2$&\\
$2A^{2}_1+4A^{1}_1$&$0$&$6$&$0$&$6$&$6$&$0$&\\
$A^{2}_1+5A^{1}_1$&$A^{1}_1$&$6$&$1$&$6$&$6$&$1$&\\
$6A^{1}_1$&$B^{1}_2$&$6$&$4$&$6$&$6$&$2$&\\
$A^{2}_5$&$B^{1}_2$&$15$&$4$&$0$&$5$&$2$&\\
$C^{1}_5$&$C^{1}_3$&$25$&$9$&$0$&$5$&$3$&\\
$A^{2}_4+A^{2}_1$&$A^{1}_1$&$11$&$1$&$1$&$5$&$1$&\\
$A^{2}_4+A^{1}_1$&$B^{1}_2$&$11$&$4$&$1$&$5$&$2$&\\
$C^{1}_4+A^{2}_1$&$B^{1}_2$&$17$&$4$&$1$&$5$&$2$&\\
$C^{1}_4+A^{1}_1$&$C^{1}_3$&$17$&$9$&$1$&$5$&$3$&\\
$A^{2}_3+A^{2}_2$&$A^{1}_1$&$9$&$1$&$0$&$5$&$1$&\\
$A^{2}_3+B^{1}_2$&$B^{1}_2$&$10$&$4$&$0$&$5$&$2$&\\
$A^{2}_3+2A^{2}_1$&$0$&$8$&$0$&$2$&$5$&$0$&\\
$A^{2}_3+A^{2}_1+A^{1}_1$&$A^{1}_1$&$8$&$1$&$2$&$5$&$1$&\\
$A^{2}_3+2A^{1}_1$&$B^{1}_2$&$8$&$4$&$2$&$5$&$2$&\\
$C^{1}_3+A^{2}_2$&$B^{1}_2$&$12$&$4$&$0$&$5$&$2$&\\
$C^{1}_3+B^{1}_2$&$C^{1}_3$&$13$&$9$&$0$&$5$&$3$&\\
$C^{1}_3+2A^{2}_1$&$A^{1}_1$&$11$&$1$&$2$&$5$&$1$&\\
$C^{1}_3+A^{2}_1+A^{1}_1$&$B^{1}_2$&$11$&$4$&$2$&$5$&$2$&\\
$C^{1}_3+2A^{1}_1$&$C^{1}_3$&$11$&$9$&$2$&$5$&$3$&\\
$2A^{2}_2+A^{2}_1$&$0$&$7$&$0$&$1$&$5$&$0$&\\
$2A^{2}_2+A^{1}_1$&$A^{1}_1$&$7$&$1$&$1$&$5$&$1$&\\
$A^{2}_2+B^{1}_2+A^{2}_1$&$A^{1}_1$&$8$&$1$&$1$&$5$&$1$&\\
$A^{2}_2+B^{1}_2+A^{1}_1$&$B^{1}_2$&$8$&$4$&$1$&$5$&$2$&\\
$A^{2}_2+2A^{2}_1+A^{1}_1$&$0$&$6$&$0$&$3$&$5$&$0$&\\
$A^{2}_2+A^{2}_1+2A^{1}_1$&$A^{1}_1$&$6$&$1$&$3$&$5$&$1$&\\
$A^{2}_2+3A^{1}_1$&$B^{1}_2$&$6$&$4$&$3$&$5$&$2$&\\
$2B^{1}_2+A^{2}_1$&$B^{1}_2$&$9$&$4$&$1$&$5$&$2$&\\
$2B^{1}_2+A^{1}_1$&$C^{1}_3$&$9$&$9$&$1$&$5$&$3$&\\
$B^{1}_2+3A^{2}_1$&$0$&$7$&$0$&$3$&$5$&$0$&\\
$B^{1}_2+2A^{2}_1+A^{1}_1$&$A^{1}_1$&$7$&$1$&$3$&$5$&$1$&\\
$B^{1}_2+A^{2}_1+2A^{1}_1$&$B^{1}_2$&$7$&$4$&$3$&$5$&$2$&\\
$B^{1}_2+3A^{1}_1$&$C^{1}_3$&$7$&$9$&$3$&$5$&$3$&\\
$3A^{2}_1+2A^{1}_1$&$0$&$5$&$0$&$5$&$5$&$0$&\\
$2A^{2}_1+3A^{1}_1$&$A^{1}_1$&$5$&$1$&$5$&$5$&$1$&\\
$A^{2}_1+4A^{1}_1$&$B^{1}_2$&$5$&$4$&$5$&$5$&$2$&\\
$5A^{1}_1$&$C^{1}_3$&$5$&$9$&$5$&$5$&$3$&\\
$A^{2}_4$&$C^{1}_3$&$10$&$9$&$0$&$4$&$3$&\\
$C^{1}_4$&$C^{1}_4$&$16$&$16$&$0$&$4$&$4$&\\
$A^{2}_3+A^{2}_1$&$B^{1}_2$&$7$&$4$&$1$&$4$&$2$&\\
$A^{2}_3+A^{1}_1$&$C^{1}_3$&$7$&$9$&$1$&$4$&$3$&\\
$C^{1}_3+A^{2}_1$&$C^{1}_3$&$10$&$9$&$1$&$4$&$3$&\\
$C^{1}_3+A^{1}_1$&$C^{1}_4$&$10$&$16$&$1$&$4$&$4$&\\
$2A^{2}_2$&$B^{1}_2$&$6$&$4$&$0$&$4$&$2$&\\
$A^{2}_2+B^{1}_2$&$C^{1}_3$&$7$&$9$&$0$&$4$&$3$&\\
$A^{2}_2+2A^{2}_1$&$A^{1}_1$&$5$&$1$&$2$&$4$&$1$&\\
$A^{2}_2+A^{2}_1+A^{1}_1$&$B^{1}_2$&$5$&$4$&$2$&$4$&$2$&\\
$A^{2}_2+2A^{1}_1$&$C^{1}_3$&$5$&$9$&$2$&$4$&$3$&\\
$2B^{1}_2$&$C^{1}_4$&$8$&$16$&$0$&$4$&$4$&\\
$B^{1}_2+2A^{2}_1$&$B^{1}_2$&$6$&$4$&$2$&$4$&$2$&\\
$B^{1}_2+A^{2}_1+A^{1}_1$&$C^{1}_3$&$6$&$9$&$2$&$4$&$3$&\\
$B^{1}_2+2A^{1}_1$&$C^{1}_4$&$6$&$16$&$2$&$4$&$4$&\\
$4A^{2}_1$&$0$&$4$&$0$&$4$&$4$&$0$&\\
$3A^{2}_1+A^{1}_1$&$A^{1}_1$&$4$&$1$&$4$&$4$&$1$&\\
$2A^{2}_1+2A^{1}_1$&$B^{1}_2$&$4$&$4$&$4$&$4$&$2$&\\
$A^{2}_1+3A^{1}_1$&$C^{1}_3$&$4$&$9$&$4$&$4$&$3$&\\
$4A^{1}_1$&$C^{1}_4$&$4$&$16$&$4$&$4$&$4$&\\
$A^{2}_3$&$C^{1}_4$&$6$&$16$&$0$&$3$&$4$&\\
$C^{1}_3$&$C^{1}_5$&$9$&$25$&$0$&$3$&$5$&\\
$A^{2}_2+A^{2}_1$&$C^{1}_3$&$4$&$9$&$1$&$3$&$3$&\\
$A^{2}_2+A^{1}_1$&$C^{1}_4$&$4$&$16$&$1$&$3$&$4$&\\
$B^{1}_2+A^{2}_1$&$C^{1}_4$&$5$&$16$&$1$&$3$&$4$&\\
$B^{1}_2+A^{1}_1$&$C^{1}_5$&$5$&$25$&$1$&$3$&$5$&\\
$3A^{2}_1$&$B^{1}_2$&$3$&$4$&$3$&$3$&$2$&\\
$2A^{2}_1+A^{1}_1$&$C^{1}_3$&$3$&$9$&$3$&$3$&$3$&\\
$A^{2}_1+2A^{1}_1$&$C^{1}_4$&$3$&$16$&$3$&$3$&$4$&\\
$3A^{1}_1$&$C^{1}_5$&$3$&$25$&$3$&$3$&$5$&\\
$A^{2}_2$&$C^{1}_5$&$3$&$25$&$0$&$2$&$5$&\\
$B^{1}_2$&$C^{1}_6$&$4$&$36$&$0$&$2$&$6$&\\
$2A^{2}_1$&$C^{1}_4$&$2$&$16$&$2$&$2$&$4$&\\
$A^{2}_1+A^{1}_1$&$C^{1}_5$&$2$&$25$&$2$&$2$&$5$&\\
$2A^{1}_1$&$C^{1}_6$&$2$&$36$&$2$&$2$&$6$&\\
$A^{2}_1$&$C^{1}_6$&$1$&$36$&$1$&$1$&$6$&\\
$A^{1}_1$&$C^{1}_7$&$1$&$49$&$1$&$1$&$7$&\\
$0$&$C^{1}_8$&$0$&$64$&$0$&$0$&$8$&\\
\end{longtable}
\end{document}